CERTIFICATE OF CALIBRATION			
Issue:-	Certificate Number:	96291	
$96291 _10$	Date of Issue:	05-Jan-23	
Approved Signatory:		Tom Williams	
Page 1 of 2	Signed:	T.	

Submitter:-

Mecmesin Limited
Newton House
Spring Copse Business Park
Slinfold
West Sussex
RH13 0SZ

Kent

Issued by:-

Kent Scientific Services
8 Abbey Wood Road
Kings Hill
West Malling
Kent
ME19 4YT
Tel: 03000415100
Fax: 01732220006

EQUIPMENT:
SERIAL NUMBER:

MAKE/TYPE:
STANDARDS USED:

DATE RECEIVED:

DATE CALIBRATED:
DETAILS:

Weights Set MS2

1 to $25,2327,2328$

N/A
Set 12412

23 December 2022

30 December 2022
26 Stainless Steel

MEASUREMENTS:

Kent Scientific Services method used: CAL SMALL, Calibration of Small Masses.
The calibrations took place in a controlled environment with the temperature held between $18^{\circ} \mathrm{C}$ and $22^{\circ} \mathrm{C}$, and with the relative humidity held between 40% and 60%.
The measurement results obtained in the table, where each measured value given represents not the true mass, but the mass of a hypothetical weight of density $8,000 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$, which in air of density $1.2 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ would balance the corresponding weight identified in the first column at $20^{\circ} \mathrm{C}$.
The method of weighing was by substitution (Borda's method). In each instance the standard weight used had been calibrated by UKAS Calibration Laboratory number 0474, 0260 or 0352 within the previous three years. The uncertainty of measurements for each of the different denominations is listed in the last column of the table Duplicate weights, where present, are indicated by a dot or dots.
Customer supplied information is notated with $\mathrm{a} \sim$, and results relate only to the item(s) calibrated.
Unless otherwise notated, samples are tested in as received condition at Kent Scientific Services.

[^0]
TABLE OF MEASUREMENT RESULTS

$\begin{gathered} \text { Identity } \\ \text { Mark } \end{gathered}$	Nominal Mass	Measured Value	Error from Nominal	Estimated Uncertainty
1	100 N	10192.46 g	+ 300 mg	$\pm 110 \mathrm{mg}$
2	100 N	10192.49 g	+ 330 mg	$\pm 110 \mathrm{mg}$
3	100 N	10192.40 g	+ 240 mg	$\pm 110 \mathrm{mg}$
4	100 N	10192.23 g	+ 70 mg	$\pm 110 \mathrm{mg}$
5	100 N	10192.39 g	+ 220 mg	$\pm 110 \mathrm{mg}$
6	100 N	10192.24 g	+ 80 mg	$\pm 110 \mathrm{mg}$
7	100 N	10192.35 g	$+180 \mathrm{mg}$	$\pm 110 \mathrm{mg}$
8	100 N	10192.36 g	+ 200 mg	$\pm 110 \mathrm{mg}$
9	100 N	10192.51 g	+ 350 mg	$\pm 110 \mathrm{mg}$
10	100 N	10192.47 g	+ 310 mg	$\pm 110 \mathrm{mg}$
11	100 N	10192.37 g	+ 210 mg	$\pm 110 \mathrm{mg}$
12	100 N	10192.41 g	+ 240 mg	$\pm 110 \mathrm{mg}$
13	100 N	10192.32 g	+ 150 mg	$\pm 110 \mathrm{mg}$
14	100 N	10192.27 g	+ 110 mg	$\pm 110 \mathrm{mg}$
15	100 N	10192.54 g	+ 380 mg	$\pm 110 \mathrm{mg}$
16	100 N	10192.35 g	+ 190 mg	$\pm 110 \mathrm{mg}$
17	100 N	10192.24 g	+ 70 mg	$\pm 110 \mathrm{mg}$
18	100 N	10192.10 g	- 60 mg	$\pm 110 \mathrm{mg}$
19	100 N	10192.33 g	$+160 \mathrm{mg}$	$\pm 110 \mathrm{mg}$
20	100 N	10192.17 g	0 mg	$\pm 110 \mathrm{mg}$
22	100 N	10192.38 g	+ 220 mg	$\pm 110 \mathrm{mg}$
23	100 N	10192.49 g	+ 330 mg	$\pm 110 \mathrm{mg}$
24	100 N	10192.31 g	+ 150 mg	$\pm 110 \mathrm{mg}$
25	100 N	10189.27 g	- 2890 mg	$\pm 110 \mathrm{mg}$
2327	50 N	5096.227 g	+ 146 mg	$\pm 52 \mathrm{mg}$
2328	50 N	5096.132 g	+ 51 mg	$\pm 52 \mathrm{mg}$
25	100 N	10192.00 g	- 160 mg	$\pm 110 \mathrm{mg}$
* Denotes Post Adjustment Calibration.				

The basis for conversion between force units and mass units is that a 1 kg mass will experience a force of g newtons where g is the strength of the local gravitational field. At Kent Scientific Services the estimated local $\alpha=9.81146 \mathrm{~ms}^{-2}$.

END OF RESULTS

[^0]: This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

