CERTIFICATE OF CALIBRATION

Issue:-

Certificate Number:

Approved Signatory:

96291

96291 10

Date of Issue:

05-Jan-23

Page 1 of 2

Signed:

Tom Williams

Issued by:-

Kent Scientific Services 8 Abbey Wood Road Kings Hill West Malling Kent

ME19 4YT

Tel: 03000 415 100 Fax: 01732 220006

Submitter:-

Mecmesin Limited Newton House Spring Copse Business Park Slinfold

West Sussex RH13 0SZ

EQUIPMENT:

Weights

Set MS2

SERIAL NUMBER:

1 to 25, 2327, 2328

MAKE/TYPE:

N/A

STANDARDS USED:

Set 12412

DATE RECEIVED:

23 December 2022

DATE CALIBRATED:

30 December 2022

DETAILS:

26 Stainless Steel

MEASUREMENTS:

Kent Scientific Services method used: CAL SMALL, Calibration of Small Masses.

The calibrations took place in a controlled environment with the temperature held between 18°C and 22°C, and with the relative humidity held between 40% and 60%.

The measurement results obtained in the table, where each measured value given represents not the true mass, but the mass of a hypothetical weight of density 8,000 kg.m⁻³, which in air of density 1.2 kg.m⁻³ would balance the corresponding weight identified in the first column at 20°C.

The method of weighing was by substitution (Borda's method). In each instance the standard weight used had been calibrated by UKAS Calibration Laboratory number 0474, 0260 or 0352 within the previous three years. The uncertainty of measurements for each of the different denominations is listed in the last column of the table Duplicate weights, where present, are indicated by a dot or dots.

Customer supplied information is notated with a ~, and results relate only to the item(s) calibrated. Unless otherwise notated, samples are tested in as received condition at Kent Scientific Services.

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Page 2 of 2

TABLE OF MEASUREMENT RESULTS

Identity		Nominal		Error from	Estimated
Mark		Mass	Value	Nominal	Uncertainty
1		100 N	10192.46 g	+ 300 mg	± 110 mg
2		100 N	10192.49 g	+ 330 mg	± 110 mg
3		100 N	10192.40 g	+ 240 mg	± 110 mg
4		100 N	10192.23 g	+ 70 mg	± 110 mg
5		100 N	10192.39 g	+ 220 mg	± 110 mg
6		100 N	10192.24 g	+ 80 mg	± 110 mg
7		100 N	10192.35 g	+ 180 mg	± 110 mg
8		100 N	10192.36 g	+ 200 mg	± 110 mg
9		100 N	10192.51 g	+ 350 mg	± 110 mg
10		100 N	10192.47 g	+ 310 mg	± 110 mg
11		100 N	10192.37 g	+ 210 mg	± 110 mg
12		100 N	10192.41 g	+ 240 mg	± 110 mg
13		100 N	10192.32 g	+ 150 mg	± 110 mg
14		100 N	10192.27 g	+ 110 mg	± 110 mg
15		100 N	10192.54 g	+ 380 mg	± 110 mg
16		100 N	10192.35 g	+ 190 mg	± 110 mg
17		100 N	10192.24 g	+ 70 mg	± 110 mg
18		100 N	10192.10 g	- 60 mg	± 110 mg
19		100 N	10192.33 g	+ 160 mg	± 110 mg
20		100 N	10192.17 g	0 mg	± 110 mg
22		100 N	10192.38 g	+ 220 mg	± 110 mg
23		100 N	10192.49 g	+ 330 mg	± 110 mg
24		100 N	10192.31 g	+ 150 mg	± 110 mg
25		100 N	10189.27 g	- 2890 mg	± 110 mg
2327		50 N	5096.227 g	+ 146 mg	± 52 mg
2328		50 N	5096.132 g	+ 51 mg	± 52 mg
25	*	100 N	10192.00 g	- 160 mg	± 110 mg
	*	Denotes	Post Adjustment	Calibration.	u.

The basis for conversion between force units and mass units is that a 1kg mass will experience a force of g newtons where g is the strength of the local gravitational field. At Kent Scientific Services the estimated local $g = 9.81146 \text{ ms}^{-2}$.

END OF RESULTS